Leveraging highly-comparative time-series analysis to study properties of neural activity related to amyloid-beta plaque burden

Annie G. Bryant^{1, ,} Joseph Giorgio^{2,3}, Michelle Lupton⁴, Gail Robinson⁵, Jurgen Fripp⁶, Michael Breakspear³, Ben D. Fulcher¹

¹School of Physics, The University of Sydney, Camperdown, NSW; ²Helen Wills Neuroscience Institute, University of California, Berkeley, CA; ³School of Psychological Sciences, The University of Newcastle, Newcastle, NSW; ⁴QIMR Berghofer Medical Research Institute, Brisbane, QLD; ⁵Queensland Brain Institute & School of Psychology, University of Queensland, Brisbane, QLD; ⁶CSIRO Health and Biosecurity, Brisbane, QLD MSW; ⁴QIMR Berghofer Medical Research Institute, Brisbane, QLD; ⁵Queensland Brain Institute & School of Psychology, University of Queensland, Brisbane, QLD; ⁶CSIRO Health and Biosecurity, Brisbane, QLD Mabry 4213@uni.sydney.edu.au

Background

Alzheimer's disease is characterized by diverse neuropathological changes like **neurodegeneration** and the aggregation of **amyloid-beta** (**A**β) **plaques** throughout the brain. Prior neuroimaging studies suggest a link between **A**β **plaque deposition** and **altered neural activity**, particularly in the **default mode network (DMN)**. However, such previous work has generally focused on just a **few statistical properties of neural activity data** like the fractional amplitude of low-frequency fluctuations or regional homogeneity, which could overlook **nuanced changes in activity dynamics** throughout the brain.

Here, we comprehensively analyse 6,639 univariate properties of **DMN activity dynamics** from resting-state functional magnetic resonance imaging (**rs-fMRI**) data. We compare these dynamics in high- versus low-amyloid individuals across the cognitive spectrum, revealing a **signature of disrupted activity** across the DMN characterized largely by changes in the **power spectrum shape** and time-series **correlation structure**.

Step 2: Calculate **brain-wide Aβ centiloids** and classify participants as **low- or high-amyloid**

Key Conclusions

- The DMN exhibits diverse altered neural activity dynamics in high- versus low-amyloid burden individuals
- Power spectrum shape and lagged self-correlation structure features are among top-performing discriminators
- Many hetsa features are more sensitive at identifying highamyloid participants than the fALFF, a commonly-used biomarker for univariate neural activity alterations in AD

Next steps

- Incorporate tau PET given evidence for altered excitation:inhibition balance in the DMN, which can promote tau aggregation
- Expand analysis to bivariate domain to examine functional connectivity between the DMN and other parts of the brain as it relates to AD neuropathology

Email Annie

• **Dimensionality reduction** and **feature selection** to better understand how activity dynamics **relate to each other**

Key References

Scheel, N., et al. J. Cereb. Blood Flow Metab. (2022)
Yang, L., et al. Front. Neurosci. (2018)
Klunk, W. E., et al. J Alzheimers Assoc. (2015)
Fulcher, B. D. & Jones, N. S. Cell Syst. (2017)
Buckner, R. L. J. Neurosci. (2005)

Acknowledgements

This work was supported by The University of Sydney Physics Foundation and the American Australian Association Graduate Education Fund.

Lab website