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Aβ PET

Step 1: Compute a comprehensive set of 6,639 from rs-fMRI blood oxygen level dependent (BOLD) time 
series across a set of four independent components (ICs) representing the DMN

Step 2: Calculate brain-wide Aβ centiloids and classify 
participants as low- or high-amyloid
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Background Methods

Step 3: Use DMN neural activity properties to 
predict low- vs. high-Aβ participants
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Alzheimer’s disease is characterized by diverse
neuropathological changes like neurodegeneration
and the aggregation of amyloid-beta (Aβ) plaques
throughout the brain. Prior neuroimaging studies
suggest a link between Aβ plaque deposition and
altered neural activity, particularly in the default
mode network (DMN). However, such previous work
has generally focused on just a few statistical
properties of neural activity data like the fractional
amplitude of low-frequency fluctuations or regional
homogeneity, which could overlook nuanced
changes in activity dynamics throughout the brain.
Here, we comprehensively analyse 6,639

univariate properties of DMN activity dynamics
from resting-state functional magnetic resonance
imaging (rs-fMRI) data. We compare these
dynamics in high- versus low-amyloid individuals
across the cognitive spectrum, revealing a signature
of disrupted activity across the DMN characterized
largely by changes in the power spectrum shape
and time-series correlation structure.
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Results

Key Conclusions Next steps
• Incorporate tau PET given evidence for altered excitation:inhibition

balance in the DMN, which can promote tau aggregation
• Expand analysis to bivariate domain to examine functional 

connectivity between the DMN and other parts of the brain as it 
relates to AD neuropathology

• Dimensionality reduction and feature selection to better 
understand how activity dynamics relate to each other

3. Null results: 
Linear SVM with 
all 6,639 hctsa 
features per 
DMN component 
does not perform 
well

1. The feature-wise approach identifies 999 
distinguishing hctsa features across 4 DMN ICs
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hctsa feature category examples:

Zoom in to the top 50 significant 
hctsa features and examine their 
pairwise correlation structure

Fit linear support vector 
machine (SVM) classifiers
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10-fold cross-
validation

10 repeats
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nulls

999 features with FDR 
< 0.001 for AUC and 

balanced accuracy

2. Many hctsa features outperform
the fractional amplitude of low 
frequency fluctuations (fALFF)
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• The DMN exhibits diverse altered neural activity dynamics 
in high- versus low-amyloid burden individuals

• Power spectrum shape and lagged self-correlation 
structure features are among top-performing discriminators

• Many hctsa features are more sensitive at identifying high-
amyloid participants than the fALFF, a commonly-used 
biomarker for univariate neural activity alterations in AD
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Representative PET image acquired from: 
https://identifiers.org/neurovault.image:306218
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