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Background
Alzheimer’s disease is characterized by diverse 

neuropathological changes like neurodegeneration and 
the aggregation of amyloid-beta (Aβ) plaques 
throughout the brain. Prior neuroimaging studies suggest 
a link between Aβ plaque deposition and altered 
neural activity, particularly in the default mode 
network (DMN). However, such previous work has 
generally focused on just a few statistical properties of 
neural activity data like the fractional amplitude of 
low-frequency fluctuations or regional homogeneity, 
which could overlook nuanced changes in activity 
dynamics throughout the brain.
 Here, we comprehensively analyse 6,639 univariate 
properties of DMN activity dynamics from resting-state 
functional magnetic resonance imaging (rs-fMRI) data. 
We compare these dynamics in high- versus low-amyloid 
individuals across the cognitive spectrum, revealing a 
signature of disrupted activity across the DMN 
characterized largely by changes in the power 
spectrum shape and time-series correlation structure.
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Key Conclusions

Next steps
• Incorporate tau PET given evidence for altered excitation:inhibition 

balance in the DMN, which can promote tau aggregation
• Expand analysis to bivariate domain to examine functional connectivity 

between the DMN and other parts of the brain as it relates to AD 
neuropathology

• Dimensionality reduction and feature selection to better understand how 
activity dynamics relate to each other

• The DMN exhibits diverse altered neural activity dynamics in high- 
versus low-amyloid burden individuals

• Power spectrum shape and lagged self-correlation structure features 
are among top-performing discriminators

• Many hctsa features are more sensitive at identifying high-amyloid 
participants than the fALFF, a commonly-used biomarker for univariate 
neural activity alterations in AD

Step 1: Compute a comprehensive set 
of 6,639 from rs-fMRI blood oxygen 
level dependent (BOLD) time series 
across a set of four independent 
components (ICs) representing the DMN

Step 2: Calculate brain-wide Aβ centiloids (CL) and classify participants as 
low- or high-amyloid

Methods

Step 3: Use DMN neural activity properties to predict low- vs. high-Aβ 
participants
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Representative PET image acquired from: 
https://identifiers.org/neurovault.image:306218

Fit linear support vector 
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Results

3. Null results: 
Linear SVM with all 6,639 hctsa 
features per DMN component 
does not perform well

hctsa feature category examples:

2. Many hctsa features outperform the fractional 
amplitude of low frequency fluctuations (fALFF)
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1. The feature-wise approach identifies 999 distinguishing hctsa features across 4 DMN ICs

Zoom in to the top 50 significant hctsa 
features and examine their pairwise 

correlation structure
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