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Methods

Preprocessing:

An adversarial collaboration to critically evaluate theories of consciousness

Cogitate Consortium, & Oscar Ferrante, I Urszula Gorska-Klimowska, (2} Simon Henin, ) Reny Hirschhorn,
Aya Khalaf, () Alex Lepauvre, & Ling Liu, {&) David Richter, {2 Yamil Vidal, 2 Niccolé Bonacchi,
Tanya Brown, &) Praveen Sripad, L2} Marcelo Armendariz, (& Katarina Bendtz, & Tara Ghafari,
Dorottya Hetenyi, Jay Jeschke, 2 Csaba Kozma, (2 David R. Mazumder, Stephanie Montenegro,
Alia Seedat, (2 Abdelrahman Sharafeldin, (& Shujun Yang, (2 Sylvain Baillet, David ). Chalmers,
Radoslaw M. Cichy, ' Francis Fallon, Theofanis I. Panagiotaropoulos, (= Hal Blumenfeld, ' Floris P de Lange,
Sasha Devore, (2 Ole Jensen, (2 Gabriel Kreiman, £ Huan Luo, (2 Melanie Boly, (2 Stanislas Dehaene,
Christof Koch, ) Giulio Tononi, (2 Michael Pitts, (2 Liad Mudrik, (& Lucia Melloni

doi: hetps:/doi.org/10.1101/2023.06.23.546249
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Classification aims:
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Many SPIs can

distinguish between

stimulus types
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Domain-independent
task relevance is not
well classified by any
functional connectivity
metric
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Frequency-based
statistics distinguish
between stimulus

types well in both
cohort batches
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If a theory is correct, the signatures
of conscious perception between
the ROls predicted by each theory
should generalise across batches.
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Conclusions

. We found tentative support for lIT: Spectral SPIs between lIT/CS meta-ROls
generalised better across participant batches.

. Conversely, the lack of evidence for a domain general signature of task-
relevance is more in support of GNWT, as IIT predicts that prefrontal engagement in
conscious perception should be task driven.

. No free lunch theorem — no one optimal classifier or time series feature for any
stimulus or task condition. As researchers should be careful about placing too much
emphasis on one time series signature especially when we have not run simulations
ahead of time.

Next steps
. Rerun our analysis on single individuals and look at variability in the ik e 2
signatures of conscious perception across individuals. TET +g(§{gr,+1 ,:+n,.]
i ) ] . .AJI.. =,Zf(Ji.,I:zi,n.,eiv.
. Incorporate large-scale biophysical modeling to see if we can reproduce and . I~

explain some of the observed signatures mechanistically.
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