Studying the brain as a complex and nonlinear dynamical system with time-series analysis

CSYS5040 17 September 2024

Annie G. Bryant PhD Candidate Dynamics and Neural Systems Lab

Mechanisms of brain activity **across scales**

Different ways of **representing brain dynamics**

Not just the brain: time-varying complex systems are everywhere!

Multivariate time series (**MTS**)

City properties: density, traffic patterns, crime rates, culture

Economics

National economy: economic growth, recession

Physics

Fluid dynamics: vortices, turbulence

Social networks

Facebook friends: community formation

Treating the **brain** as a **complex system** of great **biological interest**

Multivariate time series (**MTS**)

Treating the **brain** as a **complex system** of great **biological interest**

Treating the **brain** as a **complex system** of great **biological interest**

Multivariate time series (**MTS**)

What does this **generalized representation** offer us?

Localized dynamics of one process

Statistical dependencies between **pairs** of processes

This boils down to a **common goal**

Quantifying the desired structure in a multivariate time series:

A set of statistical properties based on **clear scientific algorithms** and **interpretable theory**, which are **informative of interesting structure(s)** in our data

$$
\qquad \qquad \blacksquare
$$

The **highly comparative time-series feature analysis** approach compares across a large library of scientific algorithms (spanning a large and interdisciplinary theoretical literature **NER**

This boils down to a **common goal**

Fulcher & Jones. *hctsa*: A Computational Framework for Automated Time-Series Phenotyping Using Massive Feature Extraction. *Cell Systems* (2017)

hctsa and *pyspi* include both **linear** and **nonlinear features**

The arsenal of **linear time series analysis features** begin by **assuming a system with linear structure**, and we think about what such a linear system would do

A linear system is **fully** captured by its **autocorrelation function (ACF)**

Local dynamics

ACF at different lags, local forecast based on rolling average, AR models, basic distributional properties (mean, variance)

Pairwise coupling

Pearson correlation, Granger causality, Euclidean distance, linear model fits, power envelope correlation

hctsa and *pyspi* include both **linear** and **nonlinear features**

Not linear

Small changes to the input can give rise to:

Chaos

Oscillations

Bifurcations

Li et al. *Nonlinear Dynamics* (2021); Wikipedia; PhysicsOpenLab; Frey & Brauns *arXiv* (2021)

hctsa and *pyspi* include both **linear** and **nonlinear features**

Nonlinear time series analysis

features do not make assumptions about the structure of the system, which can be additionally summarized by e.g., polynomial functions

Small changes to the input can give rise to:

Chaos

Oscillations

Local dynamics

Automutual information, Lyapunov exponent, fractional dimensionality, phasespace entropies, embedding distance

Pairwise coupling

Transfer entropy, dynamic time warping, additive noise modelling, phase lag index

Bifurcations

Li et al. *Nonlinear Dynamics* (2021); Wikipedia; PhysicsOpenLab; Frey & Brauns *arXiv* (2021)

Nonlinearity in brain dynamics (?)

Applications of *hctsa* to **MEG (left)** and **fMRI (right)** data have shown that **linear properties** of local dynamics tend to dominate the **principal brain-wide axes of temporal variation** of the brain at rest.

When your brain is at rest – as in not actively performing a cognitive task – it is sitting close to an equilibrium, where the **governing dynamics are approximately linear**. To detect nonlinear dynamics with **functional neuroimaging**, do we need to increase the **temporal precision** and/or **perturb** the brain away from resting equilibrium?

Do we still see nonlinearity at the

Do we still see **nonlinearity** at the **macroscale**?

With an AR(1) process: x_{t+1} = f(x_t) with a linear function, fully specified by the

autocorrelation function at lag 1

AC(1) is a "sufficient statistic" here – the summary of past observations that contains info needed to predict the future values of x

a

Article | Open access | Published: 11 December 2023

Macroscopic resting-state brain dynamics are best described by linear models

Erfan Nozari, Maxwell A. Bertolero, Jennifer Stiso, Lorenzo Caciagli, Eli J. Cornblath, Xiaosong He, Arun S. Mahadevan, George J. Pappas & Dani S. Bassett \boxdot

Nature Biomedical Engineering 8, 68-84 (2024) Cite this article

8010 Accesses | 12 Citations | 18 Altmetric | Metrics

L Linear autoregressive (AR) models

Do we still see **nonlinearity** at the **macroscale**?

4 "linearizing effects" that we can observe with **functional neuroimaging** at the **whole-brain scale**:

- 1. Spatial averaging
- 2. Temporal averaging
- 3. Observational noise
- 4. Dimensionality

Nozari et al. Macroscopic resting-state brain dynamics are best described by linear models. *Nat Biomed Eng* (2024)

Nonlinear systems can be **locally linear**

Brain imaging modalities exhibit a **spatial/temporal resolution tradeoff**

Electroencephalography (**EEG**) **directly** measures **activity of neural masses** (populations of neurons) at **high temporal precision**, but spatial resolution is **limited to the cortical surface**

Functional magnetic resonance imaging (**fMRI**) **indirectly** measures neural activity from the **cortex down to deep gray matter nuclei** via **hemodynamic coupling**

Temporal Spatial Spatial

Time-series analysis with **realistic brain activity datasets**

modes or parcels

Sample sizes of a few hundred at the most in neuroimaging studies in general

Bryce et al. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity. Neuroimage (2021).

Time-series analysis with **realistic brain activity datasets**

catch₂₂

Evaluate features across 93 diverse time-series **classification tasks**

We can usually get away with using just 22 features.

catchaMouse16

Feature evaluation across 12 mouse fMRI classification tasks

We can usually get away with using just 16 features.

Alam et al. Canonical time-series features for characterizing biologically informative dynamical patterns in fMRI. bioRxiv (2024).

Slide courtesy of Dr Ben Fulcher

A shameless plug case study on **time-series analysis for fMRI**

A shameless plug case study on **time-series analysis for fMRI**

Shafiei et al. *eLife* 2020 (pictu *Nat Comms* 2023

Cliff et al. *Nat Comp Sci* 2023 Liu et al. *bioRxiv* 2024 (right)

Classifying **neuropsychiatric disorder** cases vs. **healthy controls**

Interpretable **spatial maps** of **region-specific dysfunction**

Dynamical signatures of resting-state activity in **individual brain regions** can distinguish patients from controls in schizophrenia and bipolar disorder

Gene expression No

Anatomical changes

Stimulation analysis $\frac{1}{\sqrt{2}}$

Highlighting **linear features** for **resting-state fMRI** analysis

The benefit of **integrating** local dynamics **and** pairwise coupling

SPI-wise mean balanced accuracy (%) **AN**

iv. FC across all region pairs with one SPI pyspi **+ iii.** Whole-brain maps of all features catch22

Segue to: Tracking the **distance to criticality**

We see patterns of **criticality** in **brain dynamics**

"(A) A **critical system** can explore a **greater subset of its possible brain states** … while a non-critical system will explore a more limited subset."

Zebrafish models are used to study how **epilepsy** induces changes to **excitation/inhibition balances** that push the brain **away from criticality**.

Burrows et al. Single-cell Networks Reorganise to Facilitate Whole-brain Supercritical Dynamics During Epileptic Seizures. *bioRxiv* **(2021)**

We see patterns of **criticality** in **brain dynamics**

"The **distance to criticality** presents a **promising and underexploited** biological parameter for characterizing **cognitive differences** and **mental illness**."

"…these ideas underscore the relevance of the **distance to criticality** for **cognition**: this distance may be **dynamically varied** at a moment-to-moment >mescale in order to **flexibly adapt** to task requirements."

We see patterns of **criticality** in **brain dynamics**

"[T]he distance to criticality may constitute a well-placed biological variable for understanding both **healthy** and **pathological changes** in cognition and behavior, one that forms a **direct mechanistic link** between **neurons and neuronal ensembles at the micro scale** and **computation at the macro scale**."

Distance to criticality is relevant **beyond the brain**

How is the distance to criticality **typically measured**?

Critical slowing down

Dynamics are: More variable Evolving on a slower timescale

As you get closer to the critical point:

The system will explore a greater state domain closer to the critical point, which generally manifests as increase in the **standard deviation (SD) of the time series**.

Properties of the potential function naturally motivate timeseries features like the **SD or lag-1 autocorrelation** to track distance to the critical point, but both these measurements are **biased by noise**.

Physical systems like the brain exhibit noise that is **not trivial** relative to the scale of their **deterministic dynamics**.

Meisel. From Neurons to Networks: Critical Slowing Down Governs Information Processing Across Vigilance States. (2022)

The search for a **DTC measure** that is **robust** across levels of **dynamical noise**

Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. Phys Rev X (2024)

The search for a **DTC measure** that is **robust** across levels of **dynamical noise**

Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. *Phys Rev X* (2024)

Conventional DTC measures are **sensitive to noise**

 0.8

 0.2

 0.4

 0.6

 $|\rho_{\mu}^{\rm var}|$

…but new **noise-robust time-series features** enter the villa

Brendan & co inspected properties of these noise-robust algorithms (identified via **data-driven analysis**!) to propose a new noise-robust index of the distance to criticality: **Rescaled autodensity**

Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. *Phys Rev X* (2024)

…but new **noise-robust time-series features** enter the villa

Rescaling time-series values by the spread of differenced values corrects for the confounding effect of a **variable-noise amplitude**, by capturing the **shape of the invariant density** (which depends on both the DTC and the noise amplitude) relative to the **spread of fast fluctuations** (which depends only on the noise amplitude)

Hypothesis: **higher-order** regions exhibit **longer timescales** of neuronal activity because they are **closer to the critical point**

This is a good setting to test the noise robustness of RAD because we see variable noise levels across brain regions, attributable to:

• Differences in **thalamic drives**

Hypothesis: **higher-order** regions exhibit **longer timescales** of neuronal activity because they are **closer to the critical point**

This is a good setting to test the noise robustness of RAD because we see variable noise levels across brain regions, attributable to:

- Differences in thalamic drives
- Differences in **adjacent vasculature**

Hypothesis: **higher-order** regions exhibit **longer timescales** of neuronal activity because they are **closer to the critical point**

This is a good setting to test the noise robustness of RAD because we see variable noise levels across brain regions, attributable to:

- Differences in thalamic drives
- Differences in adjacent vasculature
- Differences in **cytoarchitecture**

Hypothesis: **higher-order** regions exhibit **longer timescales** of neuronal activity because they are **closer to the critical point**

This is a good setting to test the noise robustness of RAD because we see variable noise levels across brain regions, attributable to:

- Differences in thalamic drives
- Differences in adjacent vasculature
- Differences in cytoarchitecture
- Differences in **transcriptomic and neuromodulatory gradients**

39 mice

Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. *Phys Rev X* (2024)

My **final PhD projects** with hctsa + pyspi

Project #1: Characterizing the effects of **Alzheimer's disease pathology** on **localized region-specific dynamics**

Project #2: **Directed information** flow between the left and right hemispheres in health and disease

Thanks to my research groups as always \bullet

Dynamics & Neural Systems Group

Dr Ben Fulcher Trent Henderson Kieran Owens Aria Nguyen Rishi Maran Brendan Harris Joshua Moore Teresa Dalle Nogare

Shine Lab

A/Prof Mac Shine Brandon Munn Eli Mueller Natasha Taylor

Gabriel Wainstein Christopher Whyte Bella Orlando Joshua Tan

github.com/anniegbryant/ CSYS5040_Demo

Annie G. Bryant annie.bryant@sydney.edu.au **& @anniegbryant**