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Mechanisms of brain activity across scales

Dynamics emerge at Before we delve into modelling or analysing data from a given complex
multiple spatial and system, let’s think about the underlying mechanisms giving rise to
temporal scales: behaviours from micro to macro scales.
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[5] Pang et al. Geometric constraints on human brain function. Nature (2023)



Different ways of representing brain dynamics
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Not just the brain: time-varying complex systems are everywhere!
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Multivariate time series (MTS)

- B C
N 1 B
i i1
I e

Timepoint

City structure

o

City properties: density, traffic
patterns, crime rates, culture

Physics
@ 3
o2&
B A

Fluid dynamics:
vortices, turbulence

Economics
ol0%e
° o :}5{1
-9

National economy:
economic growth, recession

Social networks

o Ot
‘Xm(,fl
ik @

Facebook friends:
community formation



Treating the brain as a complex system of great biological interest
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Treating the brain as a complex system of great biological interest
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Treating the brain as a complex system of great biological interest
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What does this generalized representation offer us?

Localized dynamics of one process

Multivariate time series (MTS)
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" Fulcher et al. J R Soc (2013), Cell Systems (2017)
" Lubba et al. Data Mining and Knowledge Discovery (2019)

Statistical dependencies between pairs of processes

Basic (21 SPIs)

Distance similarity (26 SPIs)

Information theory (37 SPIs)

Mutual informatio
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Distance correlation
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" Cliff et al. Nat Comp Sci (2023)
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This boils down to a common goal ™

Quantifying the desired structure in a multivariate time series:

Multivariate time series (MTS) A set of statistical properties based on clear scientific
algorithms and interpretable theory, which are
S = B informative of interesting structure(s) in our data
Process >
I L
i N 0
Timepoint

The highly comparative time-series feature analysis approach
compares across a large library of scientific algorithms (spanning a
large and interdisciplinary theoretical literature ill”ﬂil[ﬂ)



This boils down to a common goal

system — time-series dataset —— massive feature extraction using hctsa — statistical learning
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[5 Fulcher & Jones. hctsa: A Computational Framework for Automated Time-Series Phenotyping Using Massive Feature Extraction. Cell Systems (2017)



hctsa and pyspi include both linear and nonlinear features

The arsenal of linear time @ Local dynamics
% . series analysis features e o
begin by assuming a system hctsa WWW\-WM
A s i with linear structure, and ACF at different lags, local forecast based
% we think about what such a on rolling average, AR models, basic
sodde ot 4 linear system would do distributional properties (mean, variance)

A linear system is fully captured by its

autocorrelation function (ACF) Pairwise coupling

Z;ZZ' { CM\N\/\/\N‘MD
h d ‘L Im] IHh jmr Pearson correlation, Granger causality,
< o] W W W W Euclidean distance, linear model fits,
power envelope correlation

-1.00 T

a@ Erbas Chaos Theory and Applications (2022); Li et al. Nonlinear Dynamics (2021)



hctsa and pyspi include both linear and nonlinear features

functions

AN B
N

Not linear

Small changes to R =S

the input can give
rise to:

Nonlinear time series analysis
features do not make assumptions
about the structure of the system,
which can be additionally
summarized by e.g., polynomial

Chaos

Oscillations

Bifurcations

g@ Li et al. Nonlinear Dynamics (2021); Wikipedia; PhysicsOpenlLab; Frey & Brauns arXiv (2021)



hctsa and pyspi include both linear and nonlinear features

Nonlinear time series analysis ‘m‘ Local dynamics
QUL NO

features do not make assumptions - WA

about the structure of the system, hctsa

which can be additionally
summarized by e.g., polynomial
functions

Automutual information, Lyapunov
exponent, fractional dimensionality, phase-
space entropies, embedding distance

b ' Chaos pyspi Pairwise coupling
N, \7
Not linear ( f\N\/\'\/\WD
Oscillations Transfer entropy, dynamic time warping,
Small changes to additive noise modelling, phase lag index
the input can give
rise to: Bifurcations

a@ Li et al. Nonlinear Dynamics (2021); Wikipedia; PhysicsOpenLab; Frey & Brauns arXiv (2021)



Nonlinearity in brain dynamics (?)

\ Real-world systems that we study, like the brain, extend beyond
. ‘ the behaviors that a linear system can exhibit; we therefore define

& & &fﬁ them as nonlinear.
K
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Applications of hctsa to MEG (left) and fMRI (right) data have shown that linear properties of local
dynamics tend to dominate the principal brain-wide axes of temporal variation of the brain at rest.

When your brain is at rest — as in not actively performing a cognitive task — it is sitting
close to an equilibrium, where the governing dynamics are approximately linear. To
detect nonlinear dynamics with functional neuroimaging, do we need to increase the
temporal precision and/or perturb the brain away from resting equilibrium?

v [5) Shafiei et al. Nature Comms (2023); eLife 2020)



Do we still see nonlinearity at the macroscale”?
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Article | Open access | Published: 11 December 2023

Macroscopic resting-state brain dynamics are best
described by linear models

Erfan Nozari, Maxwell A. Bertolero, Jennifer Stiso, Lorenzo Caciagli, Eli J. Cornblath, Xiaosong He, Arun

S. Mahadevan, George J. Pappas & Dani S. Bassett &

Nature Biomedical Engineering 8, 68-84 (2024) | Cite this article

8010 Accesses | 12 Citations | 18 Altmetric | Metrics

https://www-archiv.fdm.uni-hamburg.de/b-
online/library/crone/3028/membrane/mempot.html;
m@ Humphries et al. Neuroscience (2023); Shi et al. Nat Comms (2022)
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Do we still see nonlinearity at the macroscale?
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Do we still see nonlinearity at the macroscale?

Increasing linearity at macroscale

4 “linearizing effects” that we can observe

with functional neuroimaging at the i : W : :
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Nonlinear systems can be locally linear
X

fx)= 0 +f (@x-a)

Stable fixed point

8 https://www.desmos.com/calculator



Brain imaging modalities exhibit a spatial/temporal resolution tradeoff

Electrode Measured potentials
for each electrode
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Time-series analysis with realistic brain activity datasets

>7,000 features “"  Tens to hundreds of
b ) modes or parcels

x Glasser Gordon NeuroSynth Power | Schaefer Yeo

(360 parcels) (333 parcels) (113 parcels) (280 parcels) (100, 200 & 400 parcels) (51 parcels)
.
@ ¢ 28 @

On the Surface On the Surface In the Volume In the Volume On the Surface On the Surface
(Glasser et al., 2016) (Gordon et al., 2016) www.neurosynth.org (Power et al., 2011) (Schaefer et al., 2018) (Yeo etal., 2011)
[7] “Default” [ “Default Mode” KEYWORDS: B ‘Default Mode™ [ “Default” B “Defaun”

[Z] “Dorsal Attention* [H “Dorsal Attention* “Default Mode” [ Dorsal Attention* [ Dorsal Attention* [l “Dorsal Attention®
- satal® » P “Dorsal Attention” “Fronto-Parietal Task “FrontoParietal “FrontoParietal
FrontoParietal Fronto-Parietal

- L] “Control network” Control” O Control” D Control "

“CinguloOpercular” [l “CinguloOpercular “Salience Network” [l “CinguloOpercular [H “Ventral Attention” [ “Ventral Attention”

Sample sizes of a few hundred
at the most in neuroimaging
studies in general

ITS TOO MUCH!

Bryce et al. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity. Neuroimage (2021).



Time-series analysis with realistic brain activity datasets

catch22 catchaMouse16

Feature evaluation across 12 mouse fMRI classification
tasks

Evaluate features across 93 diverse time-series
classification tasks

We can usually get away with using just 22 features. We can usually get away with using just 16 features.
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sl & Lubba et al. catch22: CAnonical Time-series CHaracteristics. Data Min Know!

Disc (2019). [@ Alam et al. Canonical time-series features for characterizing biologically informative

dynamical patterns in fMRI. bioRxiv (2024).

Slide courtesy of Dr Ben Fulcher



A shamelesspldug case study on time-series analysis for fMRI

fMRI volume

Shafiei et al. eLife 2020 (pictured),
Nat Comms 2023

Cliff et al. Nat Comp Sci 2023 (left
Liu et al. bioRxiv 2024 (right
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A shamelesspldug case study on time-series analysis for fMRI

Local dynamics
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Classifying neuropsychiatric disorder cases vs. healthy controls

catch2?2

(e
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catch22
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[¥ Bryant et al. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. bioRxiv (2024)



Interpretable spatial maps of region-specific dysfunction

Dynamical signatures of resting-state 11
activity in individual brain regions can ( gt

distinguish patients from controls in S
schizophrenia and bipolar disorder L -
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[8 Bryant et al. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. bioRxiv (2024)



Highlighting linear features for resting-state fMRI analysis

i. SCZ: 10 features

(@]

ii. Whole-brain maps

ii. ASD: 4 features
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The benefit of integrating local dynamics and pairwise coupling

SPIl-wise mean balanced accuracy (%)
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[3 Bryant et al. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. bioRxiv (2024)



Segue to: Tracking the distance to criticality

Ising model: nodes of the lattice can
be thought of as individual
neurons/neuronal ensembles “®@
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» "o ‘o0 C*
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O’Byrne & Jerbi. How critical is brain criticality? Trends in Neuroscience (2022)



We see patterns of criticality in brain dynamics
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[ Burrows et al. Single-cell Networks Reorganise to Facilitate Whole-brain Supercritical Dynamics During Epileptic Seizures. bioRxiv (2021)



We see patterns of criticality in brain dynamics

Supercritical

(A) (B) Subcritical Avalanche critical

dd

Propagation through space

Trajectories in neuronal state space

Subcritical
Chaotic “

Stable Edge of chaos Chaotlc

(C)

Optimal input representation
non-linear transformations on input
parallel maintenance & integration

optimal storage & transfer

Dynamic range, discrimination
integration/segregation balance
critical slowing down
optimal storage & transfer

AC EOC

Information overload
Hypersensitivity
Low redundancy

Signal amplification Fading information
Hypersensitivity Max specificity
Max integration High redundancy

Signal quenching
Max specificity
Max segregation

Chaotic

Trends in Neurosciences

Subcritical Supercritical Stable

“The distance to criticality
presents a promising and
underexploited biological
parameter for characterizing
cognitive differences and
mental illness.”

“...these ideas underscore
the relevance of the
distance to criticality for
cognition: this distance may
be dynamically varied at a
moment-to-moment
timescale in order to flexibly
adapt to task requirements.”

[l O’Byrne & Jerbi. How critical is brain criticality? Trends in Neuroscience (2022)



We see patterns of criticality in brain dynamics

(A) (B) Subcr|t|ca| Avalanche cr|t|cal Supercritical

“IT]he distance to
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a ke etk A s paemhelang e i behavior, one that forms
optimal storage & transfer P e sirege ey a direct mechanistic

link between neurons
and neuronal
________ ensembles at the micro
e e scale and computation
at the macro scale.”
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Signal quenching
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Chaotic

Trends in Neurosciences

Subcritical

[l O’Byrne & Jerbi. How critical is brain criticality? Trends in Neuroscience (2022)



Distance to criticality is relevant beyond the brain

Climate science

Tipping Point Effect

Engineering Ecology

Physics Medicine
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The Tipping Point

Atipping poir ate system is a
threshold that, when exceeded, can lead to
large changes in the state of the system.
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How is the distance to criticality typically measured?

aaaaaa

sy

Critical
slowing down

Dynamics are:
More variable

Evolving on a
slower timescale

Far from transition

e/

Close to transition

77N
@

After transition

[H Meisel.

As you get closer to the critical point:

States explored = 4
‘.->...1"'
T eeely
LN L g

ceoe, LI Signal quenching Signal amplification

4 2
° .A_. PP .. .. Max specificity Hypersensitivity
“ o0 .t" Max segregation Max integration
L 2
SRR Subcritical Superecritical

The system will explore a greater state domain closer to the
critical point, which generally manifests as increase in the
standard deviation (SD) of the time series.

Properties of the potential function naturally motivate time-
series features like the SD or lag-1 autocorrelation to
track distance to the critical point, but both these
measurements are biased by noise.

Physical systems like the brain exhibit noise that is not
trivial relative to the scale of their deterministic dynamics.

From Neurons to Networks: Critical Slowing Down Governs Information Processing Across Vigilance States. (2022)



The search for a DTC measure that is robust
across levels of dynamical noise

(a) Can we predict the DTC, uy, when uncertain (b) Simulate time series for a range of y (C) Vary n between time series
noise corrupts conventional features? n = 0.05 n € [0.01,1]
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[¥ Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. Phys Rev X (2024)



The search for a DTC measure that is robust
across levels of dynamical noise

(a) can we predict the DTC, y, when uncertain (b) simulate time series for a range of y (C) Vary n between time series (@) (
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Harris, Gollo & Fulcher. Tracking the Distance to Ciriticality in Systems with Unknown Noise. Phys Rev X (2024)



Conventional DTC measures are sensitive to noise

(a) standard_deviaticn: o" = 0.3 (b) AC_1: ol w048 (a)
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[¥ Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. Phys Rev X (2024)



...but new noise-robust time-series features enter the villa
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Brendan & co inspected properties of
these noise-robust algorithms

- T (identified via data-driven analysis!) to
ol propose a new noise-robust index of

the distance to criticality:
Rescaled autodensity

I8 Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. Phys Rev X (2024)



...but new noise-robust time-series features enter the villa
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Rescaling time-series values by the spread of
differenced values corrects for the confounding
effect of a variable-noise amplitude, by capturing
the shape of the invariant density (which depends
on both the DTC and the noise amplitude) relative
to the spread of fast fluctuations (which depends
only on the noise amplitude)

[¥ Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. Phys Rev X (2024)



Application: Does distance to criticality vary across the visual hierarchy?

a Retinotopic Window Neuropixels Ex vivo
Surgery mapping Habituation implant recording imaging
ky b i
1// = (b) Mouse visual cortex
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[8 Siegle et al. Nature (2021); Harris, Gollo & Fulcher. Phys Rev X (2024)



Application: Does distance to criticality vary across the visual hierarchy?

Hypothesis: higher-order regions exhibit longer timescales of
neuronal activity because they are closer to the critical point

, This is a good setting to test the noise
(b) Mouse visual cortex = .

= robustness of RAD because we see variable
noise levels across brain regions, attributable to:
 Differences in thalamic drives

[8 Kirchgessner et al. Current Biology (2021); Harris, Gollo & Fulcher. Phys Rev X (2024)



Application: Does distance to criticality vary across the visual hierarchy?

Hypothesis: higher-order regions exhibit longer timescales of
neuronal activity because they are closer to the critical point

This is a good setting to test the noise
robustness of RAD because we see variable
noise levels across brain regions, attributable to:
| * Differences in thalamic drives

- * ., * Differences in adjacent vasculature

hinal ranl,

[8 Hiuschuk et al. Brain Structure and Function (2020); Harris, Gollo & Fulcher. Phys Rev X (2024)



Application: Does distance to criticality vary across the visual hierarchy?

Hypothesis: higher-order regions exhibit longer timescales of
neuronal activity because they are closer to the critical point

This is a good setting to test the noise
robustness of RAD because we see variable
noise levels across brain regions, attributable to:
» Differences in thalamic drives

« Differences in adjacent vasculature

» Differences in cytoarchitecture

(b) Mouse visual cortex

[ Zhang et al. Front Neurosci (2019); Harris, Gollo & Fulcher. Phys Rev X (2024)



Application: Does distance to criticality vary across the visual hierarchy?

Hypothesis: higher-order regions exhibit longer timescales of
neuronal activity because they are closer to the critical point

This is a good setting to test the noise

robustness of RAD because we see variable

noise levels across brain regions, attributable to:

 Differences in thalamic drives

» Differences in adjacent vasculature

« Differences in cytoarchitecture

« Differences in transcriptomic and
neuromodulatory gradients

[8 Huntenberg et al. Neurolmage (2021); Harris, Gollo & Fulcher. Phys Rev X (2024)



Application: Does distance to criticality vary across the visual hierarchy?
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[¥ Harris, Gollo & Fulcher. Tracking the Distance to Criticality in Systems with Unknown Noise. Phys Rev X (2024)



My final PhD projects with hctsa + pyspi

Project #1: Characterizing the effects of Project #2: Directed information flow
Alzheimer’s disease pathology on between the left and right hemispheres in

localized region-specific dynamics health and disease

H(Yn+1 |Yn(k))
—

Alzheimer disease: tau

Directed ,
information .
(D1) Y, -
X—Y
EN CE of Y given
its own past

s 7

-v A, ‘

Y &> " . lteraloccipial
JI //r & , \ \ = e 3 - Pearson’s ; A sua;zi%z{%%&::
TH /'_1 Z 4 — e . . N\ e
x B« = fMRI time series

BN cs i BN
su| perortemporal

rostralmiddlefrontal
paracentral
middletemporal

S
e
Normal older adult Normal older adult AD patient 5 bankeets | S
Low amyloid and tau High amyloid and tau High amyloid and tau o superiorfrontal | B>
% caudalmiddlefrontal ; M DI
S ean
o : 5 b across
< © = participants
i W S
a| S
“: nal o] > 20
i m e
g t gulat
=) homotc inferiortemporal { &— 1.0
s rostralanteriorcingulate { &~
< frontalpole | &= 0.5
2 rahippocampal { &
0 la x alorbitofrontal { §-
temporalpole t—
entorhinal

0 1 2 3 4

Amyloid
.
3 Shi DI between lett and right
hemispheres (mean)

E& Brettschneider et al. Nat Rev Neuro, 2015; Jin et al. Front Neurosci (2020)
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