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The neuropathological hallmarks of Alzheimer’s disease (AD): 

tau tangles, amyloid plaques, and cortical atrophy

Lerch et al. (2005)
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The neuropathological hallmarks of Alzheimer’s disease (AD): 

tau tangles, amyloid plaques, and cortical atrophy
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Represent local regional 

dynamics with univariate time-

series features like fALFF

Represent pairwise functional 

coupling with features like the 

Pearson correlation coefficient
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Aβ plaque deposition is related to neural activity 

alterations in the default mode network

DMN is active during:

Wakeful rest

Autobiographical memory

Thinking about others

Aβ plaque deposition 
colocalizes with altered resting-
state activity relative to controls

(Sperling et al. Neuron 2009)

Images adapted from Palmqvist et al. (2017) Nature Comms

Early Aβ plaque 
accumulation

Default Mode Network 
(DMN)
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: How does Aβ plaque deposition affect neural function?

Image source: Alzheimer’s Research UK

Donanemab

Understanding specific mechanism(s) through 

which Aβ plaques disrupt neuronal function 

and communication will be vital for ongoing 

AD drug development 

• Refining drug mechanisms

• Optimizing biomarkers for neural activity 

following clearance of Aβ plaques 
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Potential link between Aβ plaques and altered neural 

activity in the DMN: excitation-inhibition (E/I) imbalance 

Mounting evidence suggests that Aβ 
plaque deposition drives neuronal E/I 
balance more towards excitement, 
disrupting network function

Image from Maestú et al. (2021) Ageing Res Rev

Fractional amplitude of low-

frequency fluctuations (fALFF)

Pearson correlation 

coefficient

Images from Palop & Mucke Nat Neuro (2010) and Busche et al. Science (2008)

fMRI
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Potential link between Aβ plaques and altered neural 

activity in the DMN: excitation-inhibition (E/I) imbalance 

Fractional amplitude of low-

frequency fluctuations (fALFF)

Pearson correlation 

coefficient

fALFF PCC

…thousands of other 

ways of quantifying 

resting fMRI data

Neuroimaging: blood oxygen level-dependent 

(BOLD) functional magnetic resonance imaging (fMRI)
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How can we leverage complex systems analysis to better understand 

how Aβ plaques modulate neural activity in the DMN?

Timepoint

Brain 

region

Multivariate time series (MTS)

Neuroimaging: blood oxygen level-dependent 

(BOLD) functional magnetic resonance imaging (fMRI)

Local Pairwise Higher-order
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Comparing Aβ plaque burden and DMN activity with the 

Prospective Imaging Study of Ageing (PISA)

Unpublished work

Michelle Lupton 

Michael Breakspear

Borne et al. biorXiv (2022)

MCI/AD
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Identifying the DMN with spatial independent component analysis (ICA)

Data: Time series from 

all fMRI voxels per 

participant (TR=2.68s)

Source components: 

subregions of the DMN

Weights: coefficient indicating how much a 

voxel contributes to the source component

X

Data preprocessed by Dr Joseph Giorgio
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For each hctsa feature, 

we fit a linear SVM 

classifier using the 4 DMN 

components as inputs

Analysing DMN activity dynamics in the context of high- vs. low-

amyloid plaque burden in mild cognitive impairment + AD

Unpublished work
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outputs

 Interpretable 

feature weights
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Preliminary finding: features related to power spectrum shape and 

lagged self-correlation structure distinguish high- vs. low-amyloid brains

Unpublished work
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Example high-performing power spectrum shape feature 1:
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Preliminary finding: features related to power spectrum shape and 

lagged self-correlation structure distinguish high- vs. low-amyloid brains
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Example high-performing power spectrum shape feature 2:

SB_MotifThree_quantile_cccc
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Top 50(+) hctsa features outperform the fALFF

Top 50 features

Unpublished work
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Summary: 
the tl;dr

1

2

3

4

Takeaway 1: Time-series features related to the power 

spectrum shape and lagged self-correlation structure are 

significantly altered in the high-amyloid DMN, suggesting 

that BOLD activity is fluctuating at a lower frequency with 

greater periods of sustained high activity with high AB.  

Takeaway 2: Our data-driven analysis identified many 

features that out-perform the standard fALFF, suggesting 

potential biomarkers for further analysis.

Limitation: Amyloid centiloid burden is not spatially 

specific to DMN, and high versus low amyloid do not 

directly align with clinical diagnosis.

Future directions: Include functional connectivity properties 

within DMN subcomponents, and compare information 

gained with fMRI activity relative to standard biomarkers.
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