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The neuropathological hallmarks of Alzheimer’s disease (AD):

tau tangles, amyloid plaques, and cortical atrophy
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Represent local regional
dynamics with univariate time-

series features like fALFF
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AB plaque deposition is related to neural activity
alterations in the default mode network

(DMN)

RELAXING

DMN is active during:
Woakeful rest

AB plaque deposition
colocalizes with altered resting-

Autobiographical memory  giqte activity relative to controls
Thinking about others (Sperling et al. Neuron 2009)

Early AB plaque
accumulation

Images adapted from Palmqvist et al. (2017) Nature Comms
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P Il : How does AB plaque deposition affect neural function?
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Image source: Alzheimer’s Research UK

@ abry4213@uni.sydney.edu.au 4/] 4 Complex Systems Emerging Aspirations | September 2023


https://www.alzheimersresearchuk.org/blog/new-alzheimers-drug-donanemab-what-is-it-and-how-does-it-work/

Potential link between AP plaques and altered neural
activity in the DMN: excitation-inhibition (E/I) imbalance
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Neuron level

Excitation/inhibition imbalance
leads to impaired information
processing in neuronal circuits
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Images from Palop & Mucke Nat Neuro (2010) and Busche et al. Science (2008)
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Mounting evidence suggests that AB
plaque deposition drives neuronal E/I
balance more towards excitement,
disrupting network function

Image from Maestl et al. (2021) Ageing Res Rev
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Potential link between AP plaques and altered neural
activity in the DMN: excitation-inhibition (E/I) imbalance
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How can we leverage complex systems analysis to better understand
how AB plaques modulate neural activity in the DMN?

Neuroimaging: blood oxygen level-dependent
(BOLD) functional magnetic resonance imaging (FMRI)
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Comparing AP plaqgue burden and DMN activity with the
Prospective Imaging Study of Ageing (PISA)

PMCID: PMC7750170
PMID: 33341723

Neuroimage Clin. 2021; 29: 102527.
Published online 2020 Dec 8. doi: 10.1016/j.nicl.2020.102527

A prospective cohort study of prodromal Alzheimer’s disease: Prospective Imaging Study
of Ageing: Genes, Brain and Behaviour (PISA)
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|ldentifying the DMN with spatial independent component analysis (ICA)

Source components: Weights: coefficient indicating how much a

Data: Time series from subregions of the DMN  voxel contributes to the source component
all fMRI voxels per ”, L
participant (TR=2.68s)

Data preprocessed by Dr Joseph Giorgio
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Analysing DMN activity dynamics in the context of high- vs. low-
amyloid plaque burden in mild cognitive impairment + AD
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Preliminary finding: features related to power spectrum shape and
lagged self-correlation structure distinguish high- vs. low-amyloid brains
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Preliminary finding: features related to power spectrum shape and
lagged self-correlation structure distinguish high- vs. low-amyloid brains
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Top 50(+) hctsa features outperform the fALFF
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Takeaway 1: Time-series features related to the power
spectrum shape and lagged self-correlation structure are
significantly altered in the high-amyloid DMN, suggesting
that BOLD activity is fluctuating at a lower frequency with
greater periods of sustained high activity with high AB.

Takeaway 2: Our data-driven analysis identified many
features that out-perform the standard fALFF, suggesting
Summary: potential biomarkers for further analysis.

the tl;dr

Limitation: Amyloid centiloid burden is not spatially
specific to DMN, and high versus low amyloid do not
directly align with clinical diagnosis.

Future directions: Include functional connectivity properties
within DMN subcomponents, and compare information
gained with fMRI activity relative to standard biomarkers.
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Thank youl!
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