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My 
research 
interests

Alzheimer’s disease: A progressive neurodegenerative disease 
characterized by build-up of amyloid-beta plaques and tau 
neurofibrillary tangles in the brain; the leading cause of 
dementia worldwide

Single-cell transcriptomics: Measuring genes in individual cells 
(or nuclei) to understand cell type- and brain region-specific 
gene expression changes in a given disease space

Multimodal neuroimaging: Integrating different types of 
structural and functional neuroimaging to study complex and 
longitudinal disease-related change in real-time

Neural activity dynamics: Studying the temporal patterns of 
activity in brain regions and distributed networks.
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Using functional neuroimaging to measure local, pairwise, and network activity

Neuroimaging: blood oxygen level-

dependent (BOLD) functional magnetic 

resonance imaging (fMRI)

Local Pairwise Global

Fractional amplitude of 

low-frequency fluctuations 

(fALFF)

 Regional homogeneity 

(ReHo)

Voxel-mirrored homotopic 

connectivity (VMHC)

Pearson correlation 

coefficient

Partial correlation

Granger causality

Deep learning (e.g. 

recurrent neural networks)

Multi-voxel pattern 

analysis (MVPA)

Co-fluctuation pattern 

analysis
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What can we learn from representing brain networks as a complex system?

Timepoint

Process

Multivariate time series (MTS) representation

Biology Economics

Social networksPhysics

Brain function: perception, 

emotion, movement

National economy: economic 

growth, recession

Fluid dynamics: 

vortices, turbulence

Facebook friends: 

community formation

A complex system is a collection of 
interconnected elements that exhibit 

emergent behaviors that are not 
explicitly present in the individual parts

abry4213@uni.sydney.edu.au 3/14 FCS Young Scholars Symposium 2 | June 2023

 Can we leverage statistics derived from 
interdisciplinary domains to more comprehensively 
characterize brain dynamics in health and disease?



Multivariate time series (MTS) representation

Timepoint

Process

A complex system is a collection of 
interconnected elements that exhibit 

emergent behaviors that are not 
explicitly present in the individual parts

fALFF

…

And 7,000+ others

Pearson correlation

…

And 230+ others
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Fulcher & Jones, Cell Systems (2017)

Cliff et al., arXiv (2022) /Manuscript under review

Python toolkit for the 

statistics of 

pairwise 

interactions

What can we learn from representing brain networks as a complex system?



Highly comparative time-series analysis for case-control classification

SCZ = Schizophrenia; BPD = Bipolar disorder; ADHD = Attention-deficit hyperactivity disorder; ASD = Autism spectrum disorder
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UCLA Consortium for 

Neuropsychiatric 

Phenomics LA5c Study

Preprocessed in-house by Dr Kevin Aquino

Autism Brain 

Imaging Data 

Exchange (ABIDE)

Preprocessed by Traut et al. NeuroImage (2022)



Highly comparative time-series analysis for case-control classification
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Fit a linear support vector 

machine (SVM) classifier

Predict class labels and 

measure (balanced) accuracy

SVM animation from https://torchbearer.readthedocs.io/en/0.1.7/examples/svm_linear.html

 Computationally simple

 Interpretable outputs

 Interpretable feature weights*

Bryant et al., manuscript in preparation

10-fold cross-validation

10 repeats

×

×



Finding #1: Individual brain regions exhibit distinctively 

altered dynamics across disease states
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Bryant et al., manuscript in preparation

Key notes:

• Working with a data-driven subset of 

the available hctsa feature space (cf. 

Lubba et al. Data Min Knowl Disc 2019)

• Top performing regions in 

schizophrenia classification are in the 

medial occipital lobe (bilateral cuneus 

+ pericalcarine)

• Statistically significant performance of 

subcortical structures like the thalamus 

across conditions (where available)

• Interhemispheric asymmetry in ADHD 

classification performance 
Only regions with Bonferroni-

adjusted p<0.05 from null 

permutation test are shaded



Finding #2: Individual properties of neural activity are 

globally altered throughout the brain across disorders

Bryant et al., manuscript in preparation
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Key notes:

• Periodicity is altered 

throughout the brain 

across disorders, although 

in different ways

• Lower Wang’s periodicity 

suggests faster 

fluctuations in BOLD 

activity in the given brain 

region relative to controls

• Standard deviation and 

mean are stronger 

performers in SCZ and BPD

Balanced accuracy (%)



Finding #3: Pairwise feature analysis suggests alterations to diverse 

types of functional connectivity across the brain per disorder
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Bryant et al., manuscript in preparation

Intersection of local (regional) dynamics and pairwise coupling 

as features that distinguish clinical groups from control groups

Local 

Dynamics

Pairwise 

Coupling

Balanced accuracy (%)
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Shifting : Thinking about how neural activity changes relate to 

Alzheimer’s disease neuropathology

Proof of principle:

• Extraction of interpretable 

brain regions and time-

series features that are 

informative in case-control 

classification

• Generalizable framework 

to link insights from 

univariate and pairwise 

neural activity dynamics 

in any disease state

Amyloid-beta (Aβ) plaque deposition

Rahman & Lendel Mol Neurodegen (2021)

Goals for second half of my PhD:

• Apply methods from the first 

half of my thesis to identify 

early changes in neural 

activity in preclinical 

Alzheimer’s disease

• Investigate how the deposition 

of Aβ plaques disrupts neural 

activity in specific brain 

regions up through 

distributed networks
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The default mode network is spatially and functionally 

associated with Aβ plaque deposition

Schimmelpfennig et al. 

Front Hum Neurosci (2023)

Default Mode Network (DMN)

Key players:

Posterior cingulate cortex

Cuneus

Medial prefrontal cortex

Inferior parietal lobule

Active during:

Wakeful rest

Autobiographical memory

Thinking about others

Spatial overlap

Functional associations

Hampel et al. Mol Psych (2021)

Spread of Aβ plaque pathology



hctsa features (N=6639)
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Data preprocessed by Dr Joseph Giorgio
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6608 hctsa features

For each hctsa feature, fit a linear SVM classifier 

using the 4 DMN components as inputs

Analysing DMN activity dynamics in the context of high- vs. low-

amyloid plaque burden in mild cognitive impairment

Unpublished work
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Identify features that 

best distinguish high- 

vs. low-Aβ individuals



abry4213@uni.sydney.edu.au 13/14 FCS Young Scholars Symposium 2 | June 2023

Preliminary finding: features related to power spectrum shape and 

lagged self-correlation structure distinguish high- vs. low-amyloid brains

Unpublished work
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591 features with 

adjusted p<0.001 for 
AUC and balanced 
accuracy

Example high-performing power spectrum shape feature:
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