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Representing complex systems through time-series

Example complex system
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Brain function: perception,
emotion, movement
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Fluid dynamics:
vortices, turbulence
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National economy: economic
growth, recession

Social networks

Facebook friends:
community formation



Representing brain

Example complex system
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networks through time-series

Neuroimaging: blood oxygen level-dependent (BOLD)
functional magnetic resonance imaging (FMRI)

Pairwise Global




Example problem: use BOLD fMRI to classify individuals with versus
without a given neurological disorder
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Direct from neuroimaging to a deep learning classifier pipeline
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Schizophrenia: Yan et al. The Lancet (2019)
Autism: Dvornek et al. Machine Learning in Medical Imaging (2017)



https://www.sciencedirect.com/science/article/pii/S2352396419305456
https://link.springer.com/chapter/10.1007/978-3-319-67389-9_42

Feature-based representations of complex system temporal dynamics

Local Pairwise

Amplitude of low-frequency fluctuations Pearson correlation coefficient
Statistical properties Directed information
Sample entropy Transfer entropy
Correlation structures Coherence magnitude
Stationarity Distance metrics
Power spectrum distributions Cointegration
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https://github.com/benfulcher/hctsa
https://github.com/hendersontrent/theft
https://github.com/olivercliff/pyspi

Feature-based representations of complex system temporal dynamics
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Time-series feature vectors
Handful of manually-curated Comprehensive analysis of dozens
features to hundreds of univariate and
+ pairwise TS features
Complex deep learning method, +
e.g. multi-layer convolutional Simple classifiers that emphasize

neural network interpretability



Leveraging TS features for interpretable schizophrenia classification
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Time-series extracted from 82 cortical
and subcortical brain regions
(Image: Klein and Tourville 2012)

Measure of BOLD activity (a.u.)

theft 22 univariate features per region Linear SVM with inverse probability weighting

10-fold cross-validation to measure balanced accuracy
N
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10 repeats per CV analysis

14 pairwise features per region pair

yspi




|dentifying specific brain regions and BOLD dynamics

properties that differentiate case vs controls
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Statistical Pairwise Interaction (SPI)
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Challenges and future directions

i o \Jvbjects “Curse of dimensionality”
Brain l B B
region B =ﬂ[ N | ] M Feature space Dataset size
) i1 B B [ Dimensionality reduction Feature selection
.. - .- . = (e.g. PCA, ICA) (e.g. L1 regularization)

Time-series feature vectors

Next step: apply this framework to multimodal Alzheimer’s disease neuroimaging data
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Image adapted from: NIH National
Institute on Aging

Amyloid-beta
positron emission BOLD fMRI
tomography (PET)
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Average EEG signal entropy
Cao et al. Chaos (2015)
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